Materialy edukacyjne od Krzysztofa

Najlepsza algebraiczba zabawa - czyli algebra Boole'a

funktory

Postulaty Huntingtona

Elementy identycznościowe:
  • (X V 0 = X   - odpowiednik bramki OR)
    X + 0 = 0 + X = X (co oznacza, że:)
    0 + 0 = 0 + 0 = 0
    1 + 0 = 0 + 1 = 1
  • (X ⋀ 1 = X   - odpowiednik bramki AND)
    X * 1 = 1 * X = X (co oznacza, że:)
    0 * 1 = 1 * 0 = 0
    1 * 1 = 1 * 1 = 1
Alternatywa i koniunkcja (przemienność dodawania i mnożenia)
  • (X + Y = Y + X) :==: OR
    0 + 0 = 0 + 0 = 0
    0 + 1 = 1 + 0 = 1
    1 + 1 = 1 + 1 = 1
  • (X * Y = Y * X) :==: AND
    0 * 0 = 0 * 0 = 0
    0 * 1 = 1 * 0 = 0
    1 * 1 = 1 * 1 = 1

Łączność (asocjacja)
  • (X + Y) + Z = X + (Y + Z)
    (0 + 0) + 0 = 0 + (0 + 0) = 0
    (0 + 0) + 1 = 0 + (0 + 1) = 1
    (0 + 1) + 0 = 0 + (1 + 0) = 1
    (0 + 1) + 1 = 0 + (1 + 1) = 1
    (1 + 0) + 0 = 1 + (0 + 0) = 1
    (1 + 0) + 1 = 1 + (0 + 1) = 1
    (1 + 1) + 0 = 1 + (1 + 0) = 1
    (1 + 1) + 1 = 1 + (1 + 1) = 1
  • (X * Y) * Z = X * (Y * Z)
    (0 * 0) * 0 = 0 * (0 * 0) = 0
    (0 * 0) * 1 = 0 * (0 * 1) = 0
    (0 * 1) * 0 = 0 * (1 * 0) = 0
    (0 * 1) * 1 = 0 * (1 * 1) = 0
    (1 * 0) * 0 = 1 * (0 * 0) = 0
    (1 * 0) * 1 = 1 * (0 * 1) = 0
    (1 * 1) * 0 = 1 * (1 * 0) = 0
    (1 * 1) * 1 = 1 * (1 * 1) = 1
Absorpcja (∨ == + oraz ∧ == *)
  • X ∨ (X ∧ Y) = X ∧ (X ∨ Y) = X
    inny zapis:
    X + (X * Y) = X * (X + Y) = X
    0 + (0 * 0) = 0 * (0 + 0) = 0
    0 + (0 * 1) = 0 * (0 + 1) = 1
    1 + (1 * 0) = 1 * (1 + 0) = 1
    1 + (1 * 1) = 1 * (1 + 1) = 1
Dopełnienie
  • X ∨ ¬X = 1 (X + ¬X = 1 )
    oraz
    X ∧ ¬X = 0 (X * ¬X = 0)
    1 + 0 = 1
    1 * 0 = 0

Rozdzielniość operatorów
  • a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) oraz a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
    inny zapis:
    a + (b * c) = (a + b) * (a + c) oraz a * (b + c) = (a * b) + (a * c)
    Przykład:
    0 + (0 * 0) = (0 + 0) * (0 + 0) = 0
    1 + (0 * 0) = (1+ 0) * (1 + 0) = 1
    itd.